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We examine the solution of the integral equations for the problem of the 
steady flow of a conducting fluid in a rectangular pipe with two non- 
conducting walls and two conducting walls, the latter in planes parallel 

to the outside magnetic field. Also, we give a new form of the solution 
of Shercliff’s [ll problem of flow in a pipe with non-conducting walls. 
The actual solutions given are valid, in particular, also for large values 
of Hartnann number. 

I.. We shall consider the steady flow of a conducting fluid in a pipe 
of rectangular cross-section with two conducting walls in planes parallel 
to the exterior magnetic field Ho, the dhection of which we take along 

the x-axis. 

The stated problem was already considered in [2], where it was assumed 
that the velocity field and the electric and magnetic fields in a fluid 
do not depend on the z-coordinate along the axis of the pipe, that the 
pressure gradient dp/dz = P is constant over the length as well as the 
cross-section of the pipe and that a current I per unit length of pipe 
flows through the ideally conducting walls of the pipe. 

The problem was reduced to the solution of the integral equation 

where 
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+ Kl h vbh - E)” + (yn’ - q)2) - & (7 I/(d - 8” + (Yn’ - r1J2) - 

- & (9, V@m’ - 8” + b/n - )7J21) ( O<X<l 
O<ybd ) (1-2) 

where K,(z) is the McDonald function, 1 and d are the.lengths of the 
sides of the rectangular cross-section of the pipe in the direction of 
the field H” and perpendicular to it, respectively 

xm=2ml+x, xm’=2ml-x, Yn = 2nd + y, yn’ = 2nd - y (1.3) 

(1.4) 

where 
netic 

If 

c is the velocity of light, B, g and q are the conductivity, mag- 
permeability and viscosity of the fluid. 

yd >> 1 and yl >> 1, then Equation (1.1) is replaced by the follow- 
ing approximate equation*: 

* x(5)4 s 2SinhMzSinbM(1-2) c-. 
#) VIZ-51 slna.M + e-2MzQ) (2) + e--2”(l-z) Y (2) (1.5) 

where 

Z=$ f, (4 = (A4 = 71 is the Hartmam number ) 

2. We write Equation (1.5) in the form 
1 

(Odzdl) (2.1) 

where the following expression is obtained for x(z) [31 : 

Equation (2.2) is solved by the method of successive approximations. 

* Compare the derivation of Equations (2.43) and (4.9) of [21. 



108 G.A. Gr inberg 

As a first approximation (to which we confine ourselves here) we shall 

take an approximation in which in Equation (1.5) the slowly varying 

functions ip(z) and Y_(i) which enter as factors of the rather rapidly 

varying functions e ' and e - 2M( 1 - 2) , are replaced by their comnon 
value* 1 1 

(2.3) 

for z = 0 and z = 1, i.e. by their value at the points where the rapidly 

decreasing_; 
il;p 
onents have their maximum value, equal to unity. If we 

neglect e as small with respect to unity**, then the function w(z) 

becomes equal to 

w(z)= 1 +(A - l)(e-aMz+ e-sM(+*)) (2.4, 

and x(z) may be found from Equation (2.2), where the constant A must be 
determined from the condition ~(0) = 0. 

We assume that X(E) = x,(z) + (A - l)[x2(t) + x,(z)l.Also, we define 
the functions xi(z) by the equations 

1 

= e-2Mz, ” XJ (04 

I- 
e-2M(l-2) = 

,I+4 
(2.5) 

When replacing in the second equation t by (1 - t) and 6 by (1 - 51, 

we see that 

1 

s x2(1-<5)d5 
nl+=z-i 

= e--BM (l--z) or X3(6)=X2(1-pp~) (2.6) 

Thus it remains to find the solutions of the first and second equa- 

tions of (2.5). This may be accomplished with the help of Formula (2.2). 

Omitting the quite lengthy calculations and transformations, we obtain 

Xl (2) I=: 
1 

rc 112 [z (1 -z)]‘/’ 
(2.7) 

l Since x(1 - 2) = x(z). 

** Note that the chosen function V(Z) satisfies with the same accuracy 

the relationship 

' x (0% __A w(O)= - - 
s o I/s; 

resulting from Equation (2.1) for z = 0. 
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(2.8) 

where, again, in the last equation some of the terms of the order c - Pifc 

have been dropped. 

For z = 0 the double integral of (2.8) becomes equal to 

while for z = 1 it becomes zero. The condition 

x (0) = {Xl (z> + (A - I> 1x2 (2) + xs (W, = 

therefore gives upon elimination of the small 
the following equation 

A _ 1 = _ r (%) 
(ZM)% Jf; 

fn this mamier, the final. formula for @3> 
tion has the form 

- m,,,= 0 

quantities of order MN5” 

(2.9) 

with the assum3d approxiraa- 

(2.10) 

Here 

Mote that the inner integral of this equation is expressible in terms 
of elliptic integrals of the first and second kind with modulus k=l/d2, 
lMdy 

v~~@-~;+4as~~ =~{~q+J-q%jf+ 

j_ -rpmJz 
’ *fdq57&/2 

l+Mq (2.12) 

where it is assumed that z > u and where the following notation has been 
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introduced 
- 
z P -=e, 
5 (2.13) 

For o > z in (2.12) and (2.13) the places of z and (I must be inter- 

changed. Equations (2.12) to (2.13) are valid for any ua< 1, not only 

for v&(1- E)(l-@CT)1 * l/d 

The validity of these equations is easily established, if we assume 

in the resulting integral 

and write the obtained result in the following form 

I== *im Urn ‘4n 

2fi Qs-'o IS dQ - 
sin’ Q vi - ‘@in* Q s coscp@ _ 

W # 
sin*tp Vl - ‘/a sjn” cp 

Q??l 
1 -- 
2 s r/ 

d+ 
1 

w 
- 1/S sina Q 

we use the relationship 

A (Q) da, - cclt QA (Qj + co=% A(Q)=v1-$sinlQ 

which is easily verified by differentiation. 

3. We shall now investigate the obtained solution. First of all we 

note that the function F(z) is positive in the neighborhood of z = 0, 

and then when t increases it changes sign and continues to he negative 

up to the value z = 1, where it becomes zero. ‘&is follows directly from 

Equation (2.11) if we notice that, because of the fast convergence of the 

integral over u contained therein the only noticeable contribution to 

the value of F(z) is made in the region in which a is of the order less 

than OtM- I). 

In view of this we may assnwa for z substantially greater than M-’ 

in the inner integral of (2.11) that 

Jqz - a)2 + 4!Dsv* z 2 (3.1) 

As a result we obtain 
* %n 

s Sda 

o Jf(z - a)’ -j- 4zaa4 
z (1-- 

s2 
(vm = I(1 - 2) (1 - a)j”) (3.2) 
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For the corresponding values of z this yields 
00 

ji’ (2) Z ’ (* - zf’4 f ,-f [+ f/4 _ </a] & = _ r (%) (1 - z)” 

32”’ (2Mp 9 (2M)V4 
(3.3) 

0 

Using this formula, we obtain from (2.10) an approximate expression 
for x(z), valid in the middle part of the interval 0 < z G 1, i.e. at 
distances from its limits which are appreciably greater than M-' 

Hence it is seen that in this region for sufficiently large M the 
function x(z) differs little from x1(z). Because for such values of M 
Fquation (3.4) must be valid in the greater part of the interval (0 < 
z 6; l), in addition to the narrow zones inmediately near z = 0 and z = 1 
and because at the boundaries of these zones x(z) must home vary large, 
it follows that a sharp increase of the function x(z) must take place in- 
side these zones from the value it has on the outside boundaries of these 
zones, namely zero for z = 0 or for z = 1. 

'Ihe behavior of function x(z) in both these zones is the same (see 

Equation (2.10), from which it is seen that >xl - z) = x(z)). Therefore, 
we shall investigate the behavior of*X(z) only in the vicinity z = 0. In 
Equations (2.10) and (2.11) we may assume 

and rewrite the expression for x(z) as follows_ 

L8.J 

-’ j3t - ZP] dt ’ 

s 

vzdv 

$‘4 o f/(u - t)z + lutv4 

=0(u) 

0 

u=2Mz (3.5) 

The single-parametric function o(rr) may be tabulated* and, in parti- 
cular the value urn = 2Mz, law be found which corresponds to the aaxisua 
of the fantxion X(Z), namely the value for which O(UJ = 0. 

Values of o(o) for several values of u are tabulated below 

i4 =-2 1.0 1.5 2.0 3.0 3.5 4.0 
o(u) =0,798 0.868 0.872 0.840 0.794 
Q(u) ==0.825 0.849 0.840 0.792 0.766 

* Using Formulas (2.12) and (2.13) where it must be assumed that va = 1. 
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According to the calculations 

U m c 1.7, Omax = 0 (29 zO.875 

corresponding to these the function X(Z) has a maximum in the region near 
the wall 

(2Mp 
x max = x (z,) = x Omax zz 0.268~‘~ for z, = 2% z ‘g 

Note. For order of magnitude calculations it is useful to notice that 
for the integral 

I 

s u2dv 

A (Icp l’ = * )/(u - 42 + 4utv’ 
(3.6) 

simple evaluations may be indicated at the upper and lower end, namely 

&>A(u, t)>& for u),t),O 

rhere the upper liait is reached for o = t, and the lower for t = 0. For 
t > u > 0 the places of a and t in (3.7) must be interchanged. 

The proof of the evaluations (3.7), and also of the related and more 
general treatment of the integral 

0, <I.' 

I== s vadv 

o v-h - q2 f 4utu4 
(3.8) 

directly follows from the inequalities 
%I 

I s vadv 
1= 

o y’(rc--t)*va+4utr9 aI= o I/(u-t;;4utv’ z s 
%I 

> 
v2dv =I 2 

- q2 + 4utv2 

in which both limiting values of the integral mw be computed and give 

II=: &t W(u - t)a -+- 4lltv,2.= / 24 - t 1 I (3.9) 

I2 = &w-v+ 4utv,4 _ 1 u -_t I] (‘3.10) 

In the case ua = 1, the relationships (3.7) are obtained, which show 

that, for example, for u > t 2 0 
A&, t) -%!$!i 

where 
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i.e. 8(u, t) is a slowly variable function of u and t. 

If we now assume that approximately 

and substitute 
then we obtain 
the form 

. 

i 

1 

‘d(u,t)== 7 
foru>t>O 

(3.11) 
- 

3f 
for 0 <u <t 

these values in the middle portion of the Equation (3.5). 
an approximate expression R(u) of the function o(u) in 

2 

= U”4 r (3 / 4) 

where 

r (n, ;) = e-fP-l& s 
is an incomplete gamma* function. The values of the function a(u) for 
0 Q u Q 3.5 are for comparison given in 
maximum of Q(u), which is 0.849, occurs 
responds in the given approximation the 

the table on page 111. The 
at u= Us= 1.5. To this cor- 
value 

x mdx _k _----L?(U,) zO.228 
Jxfl 

From the given data it is seen, that the discrepancy between corre- 
sponding values of o(n) and Q(u) does not exceed a few, percent. The cal- 
culation of the values of the function o(u), however, requires consider- 

ably larger expenditure of computing labor, than does the determination 
of values of a(u) by means of Equation (3.12). 

In conclusion of this section in the figure a comparison is given of 
the results of the numerical solution of Equation (3.2) of 121 for a 
Hartmann nusber U= 10 with the results, obtainable for the same value 
of Y using the formulas (2. lo), (2.11) and (3.4). (3.5). In the case of 
numerical solution the following values of ri in the Formula (3.3) of 
[2] were chosen: 0, 0.0125, 0.0375. 0.0625. 0.0875, 0.125, 0.175, 0.25. 
0.35, 0.45 and the correspondingly located values in the other half of 

l Tables of these functions exist. See, for example, [4,51. 
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the interval. The corresponding values of ~(5) are represented in the 
figure hs the solid points. 

The values 

G.lO), 
represen 

of x(c), obtained from X 
* 

(2.11) and (3.4)‘ (3.5) are 
.ted by the circles through 

which the curve is drawn on the 
figure. The results obtained by both 
methods are in close agreement so 0.20 

that, even in the case of this com- 
paratively low Rartmann number M = 10, 
the asymptotic form of the solution 
(2.10). (2.11) may serve as a good 
approximation to the exact SOlUtiOn 0.2 03 0.5 

of the problem. 

4. When the function x(z) is found, the solution of the problem smy 
be considered essentially completed; indeed, the velocities of the flow 
u and V, end also the second maepletic field HZ are found from Equations 
(2.34) and (2.35) of [21. In these equations we must choose d = 60 and as 
a result to eliminate G((, d, r, yl, replace G(C, 0, x, y) by g(5, 0, 
x, yf and take into account that 

Jo(E) = ?1/2n?MX($) (4.1) 

As a result we obtain 

Without going into a detailed analysis of these formulas, we shall 
note only that, in the case of large M, the integral terms in these 
equations decrease very rapidly with distance from the wall y = 0. Indeed, 
from Equation (2.42) of [2] it is seen that g(s, 0, x, y) is composed of 
terms of the form 

&q~1/(2mlt2-5)‘+Y2] (m = 0, + 1, 5 2, . . .) 
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which for ~~/Z >> 1 asymptotically approach the values 

2 1 
7- 2 2nM 1/(2mlrfix - 5)” + y3 

exp (- +- v(2mZ f x - E)” + y2 > = J2 

so that, with increase of y, a rapid decrease occurs also in the func- 

tions J. f cash M(r - o/E and 1, rt sinh lwfx - &/Z. 

On this basis a suitable quantitative evaluation with the purpose in 

view may be made of the integral terms on the right sides of Equations 

(4.2) and (4.3). Let us determine the distance y = y,, from the left 

electrode beyond which these terms may be neglected with a practically 

sufficient degree of accuracy. fn the case of flow in a rectangular 

channel with sides 1 and d it follows that for d > 2y, the function 

fo(t) which satisfies Equation (l.l), does not differ practically from 

fo(c), given by EYquation (4.1). 

For cross-sections of these proportions the influence of the right and 

the left electrodes on each other may be neglected. For d < 2yo, exclud- 

ing very small values of d, the function (4.1) may serve as a first 

approximation in finding f,,(c), 

5. In conclusion we shall show how by using the conformably trans- 

formed Green’s function, we may arrive at a new form for the solution of 

Shercliff’s problem for the flow of a conducting fluid through the same 

rectangular pipe where all walls are non-conductive. 

Using the same basic equations as in Sections 1 and 2 of [21, and re- 

placing only the boundary conditions (2.1) and (2.2) of [21 by the 

following 

we reduce the problem to the solution of Equations (2.12) of [3] for the 

boundary conditions 

s Ixzo = - ppa, 

slzr=o =+p -p(f T-- g)ey(--n) 

t Ir=o = - peTa, t IxFL = be-ya 
(Gg) 

t Itl__o = t I+ = - p (1 - Z) e-y-u(x--a) 

(5.2) 

(5.3) 

i.e. for boundary conditions of the first kind. Using the Green’s func- 

tion C(t, I, X, y) for Equation (2.14) of [2] , the function vanishes on 
the sides of the rectangle. It has the form 



116 G.A. Grin&erg 

G(%, rl? 5, $4) = & i 
co 

2 wo (3, tihzl- %I2 -I- (Yn - W) - 
n=--co lft=--00 

- Ko (7 v-c6FE-12 + (!ln’ - r)Y) - h’o (T Vbn - %)” + (Yn’ - Q2) $- 

+ fr’o fr VP4n’ - El” + ($4, - 71Y 11 (5.4) 

(the notation here is the same as in (2.15 I), (2.16 I)). We find the 
value of s at any point inside the rectangle according to the equation 

s = i is ICIGE (27 ‘1, $7 ” Y)- Se-&; (0, q, q/)1 dq -i+ In=0 I&‘(& 0, 2, y)_- 

-&.d.r.Y)idl =B~jCr(i,ii.“,ri)dl+XraIGI(~,~,ZIY)iig+ 
0 0 

and correspondingly for t. Thereupon u and v are obtained from the rela- 
tions 

u = $ (p + q) r== $[e-Y(*--a)s+eY(“-a)t], u = $ @- q) = $ [,-~(x-a)~__~~(x-a)~] 

This form of the solution is particularly convenient in the case of 
large M. 

All calculations for the numerical data and for the figure, were 
carried out by K.A. Aristova, T.A. Chernova and N.V. Koroleva, to whom 
the author expresses his thanks. 
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